题目列表(包括答案和解析)
选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。)
22.选修4-1:几何证明选讲
如图,已知
是⊙
的切线,
为切点,
是⊙
的割线,与⊙
交于
两点,圆心
在
的内部,点
是
的中点。
(1)证明
四点共圆;
(2)求
的大小。
23.选修4—4:坐标系与参数方程[来源:ZXXK]
已知直线
经过点
,倾斜角
。
(1)写出直线
的参数方程;
(2)设
与曲线
相交于两点
,求点
到
两点的距离之积。
24.选修4—5:不等式证明选讲
若不等式
与不等式
同解,而
的解集为空集,求实数
的取值范围。
选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。)
22.选修4-1:几何证明选讲
如图,已知
是⊙
的切线,
为切点,
是⊙
的割线,与⊙
交于
两点,圆心
在
的内部,点![]()
是
的中点。
(1)证明
四点共圆;
(2)求
的大小。
23.选修4—4:坐标系与参数方程[来源:学科网ZXXK]
已知直线
经过点
,倾斜角
。
(1)写出直线
的参数方程;
(2)设
与曲线
相交于两点
,求点
到
两点的距离之积。
24.选修4—5:不等式证明选讲
若不等式
与不等式
同解,而
的解集为空集,求实数
的取值范围。
已知点
(
),过点
作抛物线
的切线,切点分别为
、
(其中
).
(Ⅰ)若
,求
与
的值;
(Ⅱ)在(Ⅰ)的条件下,若以点
为圆心的圆
与直线
相切,求圆
的方程;
(Ⅲ)若直线
的方程是
,且以点
为圆心的圆
与直线
相切,
求圆
面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线
与曲线
相切,且过点
,∴
,利用求根公式得到结论先求直线
的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线
的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
,借助于函数的性质圆
面积的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直线
与曲线
相切,且过点
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,则
的斜率
,
∴直线
的方程为:
,又
,
∴
,即
. -----------------7分
∵点
到直线
的距离即为圆
的半径,即
,--------------8分
故圆
的面积为
. --------------------9分
(Ⅲ)∵直线
的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
, ………10分
∴![]()
,
当且仅当
,即
,
时取等号.
故圆
面积的最小值
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com