14.若直线与圆相切.则的值等于是 . 查看更多

 

题目列表(包括答案和解析)

选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。)

 

22.选修4-1:几何证明选讲

       如图,已知是⊙的切线,为切点,是⊙的割线,与⊙交于两点,圆心的内部,点的中点。

  

(1)证明四点共圆;

   (2)求的大小。

 

23.选修4—4:坐标系与参数方程[来源:ZXXK]

       已知直线经过点,倾斜角

   (1)写出直线的参数方程;

   (2)设与曲线相交于两点,求点两点的距离之积。

24.选修4—5:不等式证明选讲

       若不等式与不等式同解,而的解集为空集,求实数的取值范围。

 

 

查看答案和解析>>

选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。)
22.选修4-1:几何证明选讲
如图,已知是⊙的切线,为切点,是⊙的割线,与⊙交于两点,圆心的内部,点的中点。
  
(1)证明四点共圆;
(2)求的大小。
23.选修4—4:坐标系与参数方程
已知直线经过点,倾斜角
(1)写出直线的参数方程;
(2)设与曲线相交于两点,求点两点的距离之积。
24.选修4—5:不等式证明选讲
若不等式与不等式同解,而的解集为空集,求实数的取值范围。

查看答案和解析>>

选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。)
22.选修4-1:几何证明选讲
如图,已知是⊙的切线,为切点,是⊙的割线,与⊙交于两点,圆心的内部,点的中点。
  
(1)证明四点共圆;
(2)求的大小。
23.选修4—4:坐标系与参数方程[来源:学科网ZXXK]
已知直线经过点,倾斜角
(1)写出直线的参数方程;
(2)设与曲线相交于两点,求点两点的距离之积。
24.选修4—5:不等式证明选讲
若不等式与不等式同解,而的解集为空集,求实数的取值范围。

查看答案和解析>>

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>

附加题:
设不等式组表示的平面区域为D,区域D内的动点P到直线x+y=0和直线x-y=0的距离之积为2。   
(1)记点P的轨迹为曲线C,则曲线C的方程为_______;   
(2)在(1)的前提下,若过点,斜率是k的直线l与曲线C交于A、B两点,记|AB|=f(x),则线段AB的长f(x)=_______;   
(3)在(2)的前提下,若以线段AB为直径的圆与y轴相切,则直线l的斜率k的值为_______。

查看答案和解析>>


同步练习册答案