抛物线上存在弦AB被直线垂直平分,求实数a的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知抛物线L的方程为x2=2py(p>0),直线y=x截抛物线L所得弦|AB|=4
2

(1)求p的值;
(2)抛物线L上是否存在异于点A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线.若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.
(I)证明:点P(x0,0)的所有“相关弦”中的中点的横坐标相同;
(II)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.

查看答案和解析>>

已知抛物线C:y2=ax(a>0),抛物线上一点N(x0, 2
2
) (x0>1)
到抛物线的焦点F的距离是3.
(1)求a的值;
(2)已知动直线l过点P(4,0),交抛物线C于A、B两点.
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

精英家教网已知抛物线y2=2px(p>0)过焦点F的任一条弦AB,设A(x1,y1),B(x2,y2)且y1>0,y2<0
(1)若y1y2=-4,求抛物线方程;
(2)是否存在常数λ,使
1
|FA|
+
1
|FB|
=λ,若存在,求出λ的值,并给予证明,若不存在,请说明理由;
(3)在抛物线对称轴(ox的正方向)上是否存在一定点M,经过点M的任意一条弦AB,使
1
|MA|2
+
1
|MB|2
为定值,若存在,则求出定点M的坐标和定值,若不存在,请说明理由.

查看答案和解析>>

已知抛物线C:y2=4x,直线l:x+y+m=0与抛物线交于A、B两点.
(1)若m=-1,求弦AB的长;
(2)若P(x1,y1)、Q(x2,y2)、R(x3,y3)是抛物线C上的三点,且直线PQ、QR、RP的斜率成等差数列,求证:x2、x1、x3成等差数列;
(3)在抛物线C上是否存在一个定点P,使得直线PA、PB的斜率互为相反数,若存在,求出点P;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案