已知.则不等式的解集. 查看更多

 

题目列表(包括答案和解析)

.(本小题满分12分)

已知以函数f(x)=mx3-x的图象上一点N(1,n)为切点的切线倾斜角为.

(1)求m、n的值;

(2)是否存在最小的正整数k,使得不等式f(x)≤k-1995,对于x∈[-1,3]恒成立?若存在,求出最小的正整数k,否则请说明理由.

 

查看答案和解析>>

.(本小题满分12分)
已知以函数f(x)=mx3-x的图象上一点N(1,n)为切点的切线倾斜角为.
(1)求m、n的值;
(2)是否存在最小的正整数k,使得不等式f(x)≤k-1995,对于x∈[-1,3]恒成立?若存在,求出最小的正整数k,否则请说明理由.

查看答案和解析>>

(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2C1关于直线y=x对称.
(1)求函数y=g(x)的解析式及定义域M
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1x2都有|h(x1)-h(x2)|≤a|x1x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设AB是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.

查看答案和解析>>

.(本小题满分12分)
已知以函数f(x)=mx3-x的图象上一点N(1,n)为切点的切线倾斜角为.
(1)求m、n的值;
(2)是否存在最小的正整数k,使得不等式f(x)≤k-1995,对于x∈[-1,3]恒成立?若存在,求出最小的正整数k,否则请说明理由.

查看答案和解析>>

(本小题满分12分)一名高二学生盼望进入某名牌大学学习,不放弃能考入该大学的任何一次机会。已知该大学通过以下任何一种方式都可被录取:

① 2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛壹等奖获得者中选拔,通过考试进入集训队则能被该大学提前录取);

② 2010年3月自主招生考试通过并且2010年6月高考分数达重点线;

③ 2010年6月高考达到该校录取分数线(该校录取分数线高于重点线)。

该名考生竞赛获省一等奖、自主招生考试通过、高考达重点线、高考达该校分数线等事件的概率如下表:

事件

省数学竞获一等奖

自主招生考试通过

高考达重点线

高考达该校分数线

概率

0.5

0.7

0.8

0.6

如果数学竞赛获省一等奖,该学生估计自己进入国家集训队的概率是0.4。

(1)求该学生参加自主招生考试的概率;

(2)求该学生参加考试次数的分布列与数学期望;

(3)求该学生被该大学录取的概率。

查看答案和解析>>


同步练习册答案