题目列表(包括答案和解析)
(本小题满分12分) 已知椭圆E:
=1(a>b>o)的离心率e=
,且经过点(
,1),O为坐标原点。
![]()
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
(本小题满分12分)
已知椭圆
:
的离心率为
,且过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)垂直于坐标轴的直线
与椭圆
相交于
、
两点,若以
为直径的圆
经过坐标原点.证明:圆
的半径为定值.
(本小题满分12分)
已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线L:
与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以M N为直径的圆经过椭圆的右顶点A.求证:直线
过定点,并求出定点的坐标.
(本小题满分12分) 已知椭圆E:
=1(a>b>o)的离心率e=
,且经过点(
,1),O为坐标原点。![]()
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
(本小题满分12分)
已知直线
所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到F的最小距离为2
(1)求椭圆C的标准方程;
(2)已知圆O:
,直线
:
,当点
在椭圆C上运动时,直线
与圆O是否相交于两个不同的点A,B?若相交,试求弦长|AB|的取值范围,否则说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com