2.已知...当和时.的轨迹分别是( ) (A)双曲线和一条直线 (B)双曲线和两条射线 (C)双曲线的一支和一条直线 (D)双曲线的一支和一条射线 查看更多

 

题目列表(包括答案和解析)

已知动圆过定点M(0,1),且与直线L:y=-1相切.
(1)求动圆圆心C的轨迹的方程;
(2)设A、B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角分别
为α和β,当α,β变化且α+β=θ(0<θ<π且θ≠
π2
)为定值时,证明:直线AB恒过定点,并求出该定点的坐标.

查看答案和解析>>

精英家教网已知点F1(-1,0),F2(1,0),动点A到点F1的距离是2
3
,线段AF2的中垂线l交AF1于点P.
(1)当点A变化时,求动点P的轨迹G的方程;
(2)过点F1、F2分别作互相垂直的两条直线分别与轨迹G交于点D、E和点M、N,试求四边形DMEN的面积的最大值和最小值.

查看答案和解析>>

已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2
3
,D是AB的中点.
(1)求动点D的轨迹C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,
①当|PQ|=3时,求直线l的方程;
②试问在x轴上是否存在点E(m,0),使
PE
QE
恒为定值?若存在,求出E点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

已知点A(-1,0)、B(1,0),△ABC的周长为2+2
2
.记动点C的轨迹为曲线W.
(1)直接写出W的方程(不写过程);
(2)经过点(0,
2
)且斜率为k的直线l与曲线W 有两个不同的交点P和Q,是否存在常数k,使得向量
OP
+
QO
与向量(-
2
,1)
共线?如果存在,求出k的值;如果不存在,请说明理由.
(3)设W的左右焦点分别为F1、F2,点R在直线l:x-
3
y+8=0上.当∠F1RF2取最大值时,求
|RF1|
|RF2|
的值.

查看答案和解析>>

已知动圆过定点,且与直线相切,其中

(I)求动圆圆心的轨迹的方程;

(II)设AB是轨迹上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标。

查看答案和解析>>


同步练习册答案