2.平面a∩平面b=MN.⊿ABC的三个顶点满足条件A∈MN.BÌa.BÏMN.CÌb.CÏMN 查看更多

 

题目列表(包括答案和解析)

(1)由“若a,b,c∈R则(ab)c=a(bc)”类比“若a,b,c为三个向量则(a•b)•c=a•(b•c)”
(2)在数列{an} 中,a1=0,an+1=2an+2猜想an=2n-2
(3)在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”
(4)若M (-2,0),N (2,0),则以MN为斜边的直角三角形直角顶点P的轨迹方程是x2+y2=4
上述四个推理中,得出的结论正确的是
(2)(3)
(2)(3)
(写出所有正确结论的序号)

查看答案和解析>>

 [选做题]本题包括A、B、C、D四小题,请选定其中两题并在相应的答题区域内作答。若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤。

A. 选修4-1:几何证明选讲

 

AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。

B. 选修4-2:矩阵与变换

 

在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值。

C. 选修4-4:坐标系与参数方程

 

在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值。

 

D. 选修4-5:不等式选讲

 

设a、b是非负实数,求证:

 

[必做题]第22题、第23题,每题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。

 

 

查看答案和解析>>

选做题:(甲、乙两题任选一题作答)
甲、如图,正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为
(Ⅰ)建立适当的坐标系,并写出点A、B、A1、C1的坐标;
(Ⅱ)求AC1与侧面ABB1A1所成的角

乙、如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a
(Ⅰ)求MN的长;
(Ⅱ)当a为何值时,MN的长最小;
(Ⅲ)当MN长最小时,求面MNA与面MNB所成的二面角α的大小.

查看答案和解析>>

选做题:(甲、乙两题任选一题作答)
甲、如图,正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为
(Ⅰ)建立适当的坐标系,并写出点A、B、A1、C1的坐标;
(Ⅱ)求AC1与侧面ABB1A1所成的角

乙、如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a
(Ⅰ)求MN的长;
(Ⅱ)当a为何值时,MN的长最小;
(Ⅲ)当MN长最小时,求面MNA与面MNB所成的二面角α的大小.

查看答案和解析>>

如图,A、B分别是异面直线a、b上的两点,自AB的中点O作平面α与a、b都平行,M、N分别是a、b上的另外的两点,MN与α交于点P.

求证:P是MN的中点.

查看答案和解析>>


同步练习册答案