已知椭圆内有一点P, F1为椭圆的右焦点.M为椭圆上的点.且使|MP|+2|MF1|之值最小.则M点的坐标是( ). (A)(, -1) (B)(1, ±) (C)(1, -) (D)(±, -1) 查看更多

 

题目列表(包括答案和解析)

已知双曲线C1和椭圆C2有相同的焦点F1(c0)F2(c0)(c>0),两曲线在第一象限内的交点为P,椭圆C2y轴负方向交点为B,且PF2B三点共线,F2的比为12,又直线PB与双曲线C1的另一交点为Q(如图),若|F2Q|=,求双曲线C1,椭圆C2的方程。

 

查看答案和解析>>

已知双曲线C1和椭圆C2有相同的焦点F1(c0)F2(c0)(c>0),两曲线在第一象限内的交点为P,椭圆C2y轴负方向交点为B,且PF2B三点共线,F2的比为12,又直线PB与双曲线C1的另一交点为Q(如图),若|F2Q|=,求双曲线C1,椭圆C2的方程。

 

查看答案和解析>>

给出以下三个命题:

(A)已知P(m,4)是椭圆(a>b>0)上的一点,F1、F2是左、右两个焦点,若△PF1F2的内切圆的半径为,则此椭圆的离心率

(B)过椭圆(a>b>0)上的任意一动点M,引圆O:x2+y2=b2的两条切线MA、MB,切点分别为A、B,若∠BMA=,则椭圆的离心率e的取值范围为

(C)已知F1(-2,0)、F2(2,0),P是直线x=-1上一动点,则以F1、F2为焦点且过点P的双曲线的离心率e的取值范围是[2,+∞).

其中真命题的代号是________(写出所有真命题的代号).

查看答案和解析>>

已知椭圆C:(a>b>0),其焦距为2c,若(≈0.618),则称椭圆C为“黄金椭圆”.

(1)求证:在黄金椭圆C:(a>b>0)中,a、b、c成等比数列.

(2)黄金椭圆C:(a>b>0)的右焦点为F2(c,0),P为椭圆C上的

任意一点.是否存在过点F2、P的直线l,使l与y轴的交点R满足?若存在,求直线l的斜率k;若不存在,请说明理由.

(3)在黄金椭圆中有真命题:已知黄金椭圆C:(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2

试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>


同步练习册答案