解:设线段中点为,过中点且与两平行直线平行的直线为,则由题意中点满足方程组 得 设所求直线斜率为K.由题意可得 解得K=-3或 求得直线方程为或 查看更多

 

题目列表(包括答案和解析)

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
OM
=x
OA
ON
=y
OB

(1)求证:x与y的关系为y=
x
x+1

(2)设f(x)=
x
x+1
,定义函数F(x)=
1
f(x)
-1(0<x≤1)
,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
1
2
的等比数列,O为原点,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在点Q(1,m),使得
OP
OQ
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
OM
=x
OA
ON
=y
OB

(1)求证:x与y的关系为y=
x
x+1

(2)设f(x)=
x
x+1
,定义函数F(x)=
1
f(x)
-1(0<x≤1)
,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
1
2
的等比数列,O为原点,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在点Q(1,m),使得
OP
OQ
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
(1)求证:x与y的关系为
(2)设,定义函数,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为的等比数列,O为原点,令,是否存在点Q(1,m),使得?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
(1)求证:x与y的关系为
(2)设,定义函数,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为的等比数列,O为原点,令,是否存在点Q(1,m),使得?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

精英家教网精英家教网如图1,OA,OB是某地一个湖泊的两条互相垂直的湖堤,线段CD和曲线段EF分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥CD上某点M分别修建与OA,OB平行的栈桥MG、MK,且以MG、MK为边建一个跨越水面的三角形观光平台MGK.建立如图2所示的直角坐标系,测得线段CD的方程是x+2y=20(0≤x≤20),曲线段EF的方程是xy=200(5≤x≤40),设点M的坐标为(s,t),记z=s•t.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度
(1)求z的取值范围;
(2)试写出三角形观光平台MGK面积S△MGK关于z的函数解析式,并求出该面积的最小值.

查看答案和解析>>


同步练习册答案