题目列表(包括答案和解析)
(本题满分12分)
已知函数f(x)=x2+ax-lnx,a∈R;
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然对数的底数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
(本小题满分12分)
已知数列{an}的前三项与数列{bn}的前三项对应相等,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1-bn}是等差数列.
(1)求数列{an}与{bn}的通项公式;
(2)是否存在k∈N*,使得bk-ak∈(0,1)?请说明理由.
(本小题满分12分)
已知直线l1经过A(1,1)和B(3,2),直线l2方程为2x-4y-3=0.
(1)求直线l1的方程;
(2)判断直线l1与l2的位置关系,并说明理由。
(本小题满分12分)
已知方向向量为v=(1,
)的直线l过点(0,-2
)和椭圆C:![]()
的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.
(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足
cot∠MON
≠0(O为原点).若存在,求直线m的方程;若不存
在,请说明理由.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com