题目列表(包括答案和解析)
(本小题满分14分)
设椭圆
的左、右焦点分别为F1、F2,上顶点为A,离心率e=
,在x轴负半轴上有一点B,且
.
(Ⅰ)若过A、B、F2三点的圆恰好与直线
相切,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点F2作斜率为k的直线
与椭圆C交于M、N两点,在x轴上是否存在点p(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由.
、(本小题满分14分) 设函数![]()
(Ⅰ)求
的单调区间;
(Ⅱ)当
时,若方程
在
上有两个实数解,求实数t的取值范围;
(Ⅲ)证明:当m>n>0时,![]()
(本小题满分14分)如图,已知矩形ABCD的边AB="2" ,BC=
,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的位置为点P。
(1)求证:平面PCE
平面PCF;
(2)设M、N分别为棱PA、EC的中点,求直线MN与平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。
![]()
(本小题满分14分)如图,已知矩形ABCD的边AB=2 ,BC=
,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的位置为点P。
(1)求证:平面PCE
平面PCF;
(2)设M、N分别为棱PA、EC的中点,求直线MN与平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。
![]()
(本小题满分14分)已知定义在实数集上的函数
N
,其导函数记为
,且满足
,其中
、
、
为常数,
.设函数![]()
R且
.
(Ⅰ)求实数
的值;
(Ⅱ)若函数
无极值点,其导函数
有零点,求m的值;
(Ⅲ)求函数
在
的图象上任一点处的切线斜率k的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com