解:Aa.∴A.a确定一个平面.设为β. ∵B∈a,∴B∈β,又A∈β,∴ABβ 同理ACβ.ADβ ∵点A与直线a在α的异侧. ∴β与α相交.∴面ABD与面α相交.交线为EG ∵BD∥α,BD面BAD.面BAD∩α=EG ∴BD∥EG,∴△AEG∽△ABD. ∴(相似三角形对应线段成比例) ∴EG=. 09033 1-6.ACBDDA 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
b-a
b
<ln
b
a
b-a
a
(可不用证明函数的连续性和可导性).

查看答案和解析>>

(2011•重庆二模)若函数f(x)=log3(x+1)的反函数为y=f-1(x),则方程f-1(x)=8的解为(  )

查看答案和解析>>

以下命题是真命题的序号为

①若ac=bc,则a=b.
②若△ABC内接于椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,则其外心与椭圆的中心O不会重合.
③记f(x)•g(x)=0的解集为A,f(x)=0或g(x)=0的解集为B,则A=B.
④抛物线C1:y2=2p1x(p1>0),抛物线C2:y2=2p2x(p2>0),且p1≠p2;过原点O的直线l与抛物线C1,C2分别交于点A1,A2,过原点O的直线m与抛物线C1,C2分别交于点B1,B2,(l与m不重合),则A1B1平行A2B2

查看答案和解析>>

已知直线y=k(x-3)与双曲线
x2
m
-
y2
27
=1
,有如下信息:联立方程组
y=k(x-3)
x2
m
-
y2
27
=1
消去y后得到方程Ax2+Bx+C=0,分类讨论:
(1)当A=0时,该方程恒有一解;
(2)当A≠0时,△=B2-4AC≥0恒成立.在满足所提供信息的前提下,双曲线离心率的取值范围是(  )
A、[9,+∞)
B、(1,9]
C、(1,2]
D、[2,+∞)

查看答案和解析>>

不等式组
x2-1<0
x2-3x<0
的解集(  )
A、{x|-1<x<1}
B、{x|0<x<3}
C、{x|0<x<1}
D、{x|-1<x<3}

查看答案和解析>>


同步练习册答案