6椭圆上的一点到左焦点的最大距离为8,到右准线的最小距离 为,则此椭圆的方程为 . 7与方程的图形关于对称的图形的方程是 . 8设P是抛物线上的动点,点A的坐标为,点M在直线PA上, 且分所成的比为2:1,则点M的轨迹方程是 . 9设椭圆与双曲线有共同的焦点,且椭圆长轴是双曲线实轴的2倍, 则椭圆与双曲线的交点轨迹是 . 查看更多

 

题目列表(包括答案和解析)

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任一点P到两个焦点的距离的和为6,焦距为4
2
,A,B分别是椭圆的左右顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设f(x)=
S2(x)
x+3
,求函数f(x)的最大值.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任一点P到两焦点的距离的和为6,离心率为
2
2
3
,A、B分别是椭圆的左右顶点.
(1)求椭圆的标准方程;
(2)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设f(x)=
[S(x)]2
x+3
,求函数f(x)的最大值.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任一点P到两个焦点的距离的和为6,焦距为4
2
,A,B分别是椭圆的左右顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设f(x)=
S2(x)
x+3
,求函数f(x)的最大值.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任一点P到两焦点的距离的和为6,离心率为
2
2
3
,A、B分别是椭圆的左右顶点.
(1)求椭圆的标准方程;
(2)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设f(x)=
[S(x)]2
x+3
,求函数f(x)的最大值.

查看答案和解析>>

椭圆上任一点P到两个焦点的距离的和为6,焦距为,A,B分别是椭圆的左右顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设,求函数f(x)的最大值.

查看答案和解析>>


同步练习册答案