在三角形中.有结论:“三角形ABC中.AB+BC>AC .类似地.在四面体P-ABC中有 . 查看更多

 

题目列表(包括答案和解析)

已知结论:“在正三角形ABC中,若D是BC的中点,G是三角形ABC重心,则
AG
GD
=2”.若把该结论推广到空间,则有结论:“在正四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则
AO
OM
=
 

查看答案和解析>>

在△ABC中,内角A,B,C所对的边分别a,b,c,给出下列结论:
①A>B>C,则sinA>sinB>sinC;
②若
sinA
a
=
cosB
b
=
cosC
c
,△ABC为等边三角形;
③必存在A,B,C,使tanAtanBtanC<tanA+tanB+tanC成立;
④若a=40,b=20,B=25°,△ABC必有两解.
其中,结论正确的编号为
①④
①④
(写出所有正确结论的编号).

查看答案和解析>>

已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则
AG
GD
=2
”,若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则
AO
OM
=(  )

查看答案和解析>>

在△ABC中,D为AB上任一点,h为AB边上的高,△ADC、△BDC、△ABC的内切圆半径分别为r1,r2,r,则有如下的等式恒成立:
AC
r1
+
BD
r2
=
AB
r
+
2CD
h
,三棱锥P-ABC中D位AB上任一点,h为过点P的三棱锥的高,三棱锥P-ADC、P-BDC、P-ABC的内切球的半径分别为r1,r2,r,请类比平面三角形中的结论,写出类似的一个恒等式为
S△ADC
r1
+
S△BCD
r2
=
S△ABC
r
+
2S△PDC
h
S△ADC
r1
+
S△BCD
r2
=
S△ABC
r
+
2S△PDC
h

查看答案和解析>>

已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则”。若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若的中心为M,四面体内部一点O到四面体各面的距离都相等”,则(   )

A.1                B.2                C.3                D.4

 

查看答案和解析>>


同步练习册答案