如图.过点P(1,0)作曲线C: 的切线.切点为,设点在x轴上的投影是点,又过点作曲线C的切线.切点为,设在x轴上的投影是,-,依此下去,得到一系列点,,-,,-,设点的横坐标为. (Ⅰ)试求数列{}的通项公式,(用的代数式表示) (Ⅱ)求证: (Ⅲ)求证:(注:). 解: (Ⅰ) ,若切点是,则 切线方程为. 1分 当n=1时,切线过点(1,0),即,得 当n>1时,切线过点,即,解得. 数列是首项为.公比为的等比数列. 故所求通项 . 4分 知 9分 (Ⅲ)设,则, 两式相减得. . 故. 14分 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k∈N*,k>1)的切线,切点为Q1,设Q1点在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2;…;依此下去,得到一系列点Q1,Q2,…,Qn,…,设点Qn的横坐标为an
(Ⅰ)试求数列{an}的通项公式an;(用k的代数式表示)
(Ⅱ)求证:an≥1+
n
k-1

(Ⅲ)求证:
n
i=1
i
ai
k2-k
(注:
n
i=1
ai=a1+a2+…+an
).

查看答案和解析>>

(08年咸阳市一模) (14分)如图,过点P(1,0)作曲线C: 的切线,切点为,设点在x轴上的投影是点;又过点作曲线C的切线,切点为,设x轴上的投影是;…;依此下去,得到一系列点,,…,,…,设点的横坐标为.

(Ⅰ)试求数列{}的通项公式;(用的代数式表示)

(Ⅱ)求证:

(Ⅲ)求证:(注:).

 

查看答案和解析>>

如图,过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k∈N*,k>1)的切线,切点为Q1,设Q1点在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2;…;依此下去,得到一系列点Q1,Q2,…,Qn,…,设点Qn的横坐标为an
(Ⅰ)试求数列{an}的通项公式an;(用k的代数式表示)
(Ⅱ)求证:
(Ⅲ)求证:(注:).

查看答案和解析>>

如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,再过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的交点为R.
(I)求动点R的轨迹E的方程;
(II)设E的上顶点为M,直线l交曲线E于P、Q两点,问:是否存在这样的直线l,使点G(1,0)恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

如图,已知动圆M过定点F(1,0)且与x轴相切,点F关于圆心M的对称点为F′,
动点F′的轨迹为C.
(1)求曲线C的方程;
(2)设A(x,y)是曲线C上的一个定点,过点A任意作两条倾斜角互补的直线,分别与曲线C相交于另外两点P、Q.
①证明:直线PQ的斜率为定值;
②记曲线C位于P、Q两点之间的那一段为l.若点B在l上,且点B到直线PQ的距离最大,求点B的坐标.

查看答案和解析>>


同步练习册答案