题目列表(包括答案和解析)
.(几何证明选讲选做题) 如图,
是半圆
的直径,点
在半圆上,
于
,且
,设
,则
=________.
![]()
已知![]()
(1)求函数
在
上的最小值
(2)对一切的
恒成立,求实数a的取值范围
(3)证明对一切
,都有
成立
【解析】第一问中利用
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
![]()
第二问中,
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
第三问中问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
解:(1)
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
…………4分
(2)
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
…………9分
(3)问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
(1)已知函数
为有理数且
),求函数
的最小值;
(2)①试用(1)的结果证明命题
:设
为有理数且
,若
时,则
;
②请将命题
推广到一般形式
,并证明你的结论;
注:当
为正有理数时,有求导公式![]()
.用反证法证明命题:若P则q ,其第一步是反设命题的结论不成立,这个正确的反设是
A.若P则非q B.若非P则q C.非P D.非q
(12分)已知a>0,函数![]()
设0<
<
,记曲线y=
在点
处的切线为L,
⑴ 求L的方程
⑵ 设L与x轴交点为
,证明:①
; ②若
,则
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com