题目列表(包括答案和解析)
(本小题满分14分) 如图,已知椭圆C的中心在原点,焦点在x轴上,离心率为
,且过点
,点A、B分别是椭圆C 长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于
轴上方,
.
(1)求椭圆C的方程;
(2)求点P的坐标;
(3)设M是直角三角PAF的外接圆圆心,求椭圆C上的点到点M的距离
的最小值.
(本小题满分14分)
设
,椭圆方程为
,抛物线方程为
.如图6所示,过点
作
轴的平行线,与抛物线在第一象限的交点为
,已知抛物线在点
的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设
分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
![]()
(本小题满分14分)设
,椭圆方程为
,抛物线方程为
.如图6所示,过点
作
轴的平行线,与抛物线在第一象限的交点为
,已知抛物线在点
的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设
分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
![]()
(本题满分14分)
如图,已知椭圆
=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.
![]()
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若
=2
,
·
=
,求椭圆的方程.
(本题满分14分)
如图,已知椭圆
=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.![]()
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若
=2
,
·
=
,求椭圆的方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com