题目列表(包括答案和解析)
(本题满分12分) 已知盒子中有4个红球,n个白球,若从中一次取出4个球,其中白球的个数为X,且![]()
(I)求n的值;
(II)若从中不放回地逐一抽取,取到所有白球则停止抽取。在前3次取球中恰取到1个白球的条件下,共需取球Y次,求Y的分布列和E(Y)。
(本题满分10分)在一个口袋中装有12个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到红球的概率是
,从袋中任意摸出2个球,至少得到一个黑球的概率是
。
求:(1)袋中黑球的个数;
(2)从袋中任意摸出3个球,至少得到2个黑球的概率。(结果用分数表示)
(本题满分12分)盒中有5个红球,11个蓝球。红球中有2个玻璃球,3个木质球;蓝球中有4个玻璃球,7个木质球。现从中任取一球,假设每个球摸到的可能性都相同,若已知取到的球是玻璃球,求它是蓝球的概率。
(本题分12分)
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为
,求
的分布列及期望.
〈本题满分12分〉甲、乙两同学进行投篮比赛,每一简每人各投两次球,规定进球数多者该局获胜,进球数相同则为平局.已知甲每次投进的概率为2/3乙每次投进的概率为1/2,甲、乙之间的投篮相互独立.
(1) 求甲、乙两同学进行一扃比赛的结果不是平局的概率;
(2) 设3局比赛中,甲每局进两球获胜的局数为
。求
的分布列及数学期望.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com