题目列表(包括答案和解析)
. (本小题满分14分)
已知函数
.
(I) 若函数
在
处取得极值为-1.求
、
的值;
(II)若
,求
的单调区间
(III)在(I)的条件下令
,常数
,若
的图象与
轴交于
、
两点,线段
的中点为
,求证:![]()
(本小题满分14分)
已知二次函数
为常数);
.若直线
1、
2与函数f(x)的图象以及
1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.
(Ⅰ)求
、b、c的值
(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;
(Ⅲ)若
问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.
(本小题满分14分)
已知二次函数
为常数);
.若直线
1、
2与函数f(x)的图象以及
1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.
(Ⅰ)求
、b、c的值
(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;
(Ⅲ)若
问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.
(本小题满分14分) 对函数Φ(x),定义fk(x)=Φ(x-mk)+nk(其中x∈(mk,
m+mk],k∈Z,m>0,n>0,且m、n为常数)为Φ(x)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.
(1)当Φ(x)=2x时 ①求f0(x)和fk(x)的解析式; ②求证:Φ(x)的各阶阶梯函数图象的最高点共线;
(本小题满分14分) 对函数Φ(x),定义fk(x)=Φ(x-mk)+nk(其中x∈(mk,
m+mk],k∈Z,m>0,n>0,且m、n为常数)为Φ(x)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.
(1)当Φ(x)=2x时 ①求f0(x)和fk(x)的解析式; ②求证:Φ(x)的各阶阶梯函数图象的最高点共线;
(2)若Φ(x)=x2,则是否存在正整数k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com