在直三棱柱中.点是的中点.底面三角形是直角三角形.... (1)求C1到平面A1BC的距离; (2)求直线与平面所成的角. 查看更多

 

题目列表(包括答案和解析)

(本题12分)如图,在直三棱柱(侧棱与底面垂直的三棱柱)中,边的中点.

(Ⅰ)求证:;                                    

(Ⅱ)求证:∥ 面. 

 

 

查看答案和解析>>

(本题12分)如图,在直三棱柱(侧棱与底面垂直的三棱柱)中,边的中点.

(Ⅰ)求证:;                                    

(Ⅱ)求证:∥ 面. 

查看答案和解析>>

(本题12分)如图,在直三棱柱(侧棱与底面垂直的三棱柱)中,边的中点.
(Ⅰ)求证:;                                    
(Ⅱ)求证:∥面. 

查看答案和解析>>

(本题12分)如图,斜三棱柱的底面是直角三角形,,点在底面上的射影恰好是的中点,且
(Ⅰ)求证:平面平面
(Ⅱ)求证:
(Ⅲ)求二面角的大小.

查看答案和解析>>

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>


同步练习册答案