20].已知椭圆的一个顶点为A.焦点在x轴上.若右焦点到直线x-y+2=0的距离为3. (1)求椭圆的方程, (2)设椭圆与直线y=kx+m相交于不同的两点M.N.当|AM|=|AN|时.求m的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知椭圆的焦点在轴上,长轴长等于20,离心率等于

(1)求椭圆的标准方程;

(2)若一直线过该椭圆的一个焦点并交椭圆与A,B两点,求的周长(是另一焦点)

 

查看答案和解析>>

精英家教网已知以原点O为中心的椭圆的一条准线方程为y=
4
3
3
,离心率e=
3
2
,M是椭圆上的动点
(Ⅰ)若C,D的坐标分别是(0,-
3
),(0,
3
)
,求|MC|•|MD|的最大值;
(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M在x轴上的射影,点Q满足条件:
OQ
=
OM
+
ON
QA
BA
=0
、求线段QB的中点P的轨迹方程.

查看答案和解析>>

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1两焦点F1,F2,则椭圆上存在六个不同点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是(  )

查看答案和解析>>

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
A选修4-1:几何证明选讲
如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.
求证:∠ACB=
1
3
∠OAC.
B选修4-2:矩阵与变换
已知矩阵A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C选修4-3:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
a
3cos2θ+4sin2θ
,焦距为2,求实数a的值.
D选修4-4:不等式选讲
已知函数f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c为实数)的最小值为m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

给出下列命题:

①已知椭圆两焦点,则椭圆上存在六个不同点,使得△为直角三角形;

②已知直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为2;

③若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为为坐标原点,则

④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.

其中正确命题的序号是(     )

A.①③④             B.①②③          C.③④            D.①②④

 

查看答案和解析>>


同步练习册答案