题目列表(包括答案和解析)
(本题满分15分)已知过点
(
,0)(
)的动直线
交抛物线
于
、
两点,点
与点
关于
轴对称.(I)当
时,求证:
;
(II)对于给定的正数
,是否存在直线
:
,使得
被以
为直径的圆所截得的弦长为定值?如果存在,求出的![]()
方程;如果不存在,试说明理由.
(本题满分15分) 已知抛物线
的顶点是椭圆
的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线
的方程;
(2)已知动直线
过点
,交抛物线
于
、
两点.
若直线
的斜率为1,求
的长;
是否存在垂直于
轴的直线
被以
为直径的圆
所截得的弦长恒为定值?如果存在,求出
的方程;如果不存在,说明理由.
(本题满分12分)
已知椭圆
的中心在原点,焦点在
轴上,椭圆上的点到焦点的距离的最
小值为
,离心率为
。
(I)求椭圆
的方程;
(Ⅱ)过点(1,0)作直线
交
于
、
两点,试问:在
轴上是否存在一个定点
,使
为定值?若存在,求出这个定点
的坐标;若不存在,请说明理由。
(本题满分15分)如图,分别过椭圆E:
左右焦点
、
的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率
、
、
、
满足
.已知当l1与x轴重合时,
,
.
![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在定点M、N,使得
为定值.若存在,求出M、N点坐标,若不存在,说明理由.
(本题满分12分)已知过点
且斜率为1的直线
与直线![]()
交于点
.
(1)求以
、
为焦点且过点
的椭圆
的方程;
(2)设点
是椭圆
上除长轴两端点外的任意一点,试问在
轴上是否存在两定点
、
使
得直线
、
的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点
、
的坐标;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com