题目列表(包括答案和解析)
(本小题满分12分)已知数列{an}的前n项和为Sn, 且满足条件:4S n =
+ 4n – 1 , nÎN*.
(1) 证明:(a n– 2)2 –
=0 (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .
(本小题满分12分)
已知数列{an}的前n项和为Sn,点
在直线
上.数列{bn}满足
,前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设
,数列{cn}的前n和为Tn,求使不等式
对一切
都成立的最大正整数k的值.
(本小题满分12分)已知数列{an}满足a1=1,an>0,Sn是数列{an}的前n项和,对任意n∈N+,有2Sn=p(2
+an-1)(p为常数).
(1)求p和a2,a3的值;
(2)求数列{an}的通项公式.
(本小题满分12分) 设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通项公式;
(2)求数列
的前n项和Sn.
(本小题满分12分)已知数列{an}的前n项和
,
,且Sn的最大值为8.
(1)确定常数k的值,并求通项公式an;
(2)求数列
的前n项和Tn。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com