(本小题15分.第一问7分.第二问8分) 已知抛物线. (1)若.设点坐标为.求抛物线上距点最近的点的坐标及相应的距离, (2)若到抛物线上点的最小距离为4.求抛物线的方程. 查看更多

 

题目列表(包括答案和解析)

某港口的水深(米)是时间,单位:小时)的函数,下面是每天时间与水深的关系表:

0

3

6

9

12

15

18

21

24

10

13

9.9

7

10

13

10.1

7

10

经过长期观测, 可近似的看成是函数,(本小题满分14分)

(1)根据以上数据,求出的解析式。

(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?

【解析】第一问由表中数据可以看到:水深最大值为13,最小值为7,,

∴A+b=13,   -A+b=7   解得  A=3,  b=10

第二问要想船舶安全,必须深度,即

       

解得: 得到结论。

 

查看答案和解析>>

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

箱子里有3双不同的手套,随机地拿出2只,记事件A={拿出的手套配不成对};事件B={拿出的都是同一只手上的手套};事件C={拿出的手套一只是左手的,一只是右手的,但配不成对}。(本小题满分13分)

(1)请罗列出所有的基本事件;

(2)分别求事件A、事件B、事件C的概率;

(3)说出事件A、事件B、事件C的关系。

【解析】第一问利用分别设3双手套为:分别代表左手手套,分别代表右手手套。

第二问①事件A包含12个基本事件,故P(A)= ,(或能配对的只有3个基本事件,

P(A)= );

②事件B包含6个基本事件,故P(B)=

事件C包含6个基本事件,故P(C)=

第三问

解:(1)分别设3双手套为:分别代表左手手套,分别代表右手手套。…………2分

箱子里 的3双不同的手套,随机地拿出2只,所有的基本事件是:

)、()、()、()、(

 ,)、()、()、();

)、()、(

)、()、()  共15个基本事件。 ……………5分

(2)①事件A包含12个基本事件,故P(A)= ,(或能配对的只有3个基本事件,

P(A)= );                    ……………7分

②事件B包含6个基本事件,故P(B)= ;…………9分

③事件C包含6个基本事件,故P(C)= 。…………11分

⑶ 

 

查看答案和解析>>


同步练习册答案