19.设函数且构成等差数列. (1) 求的解析式, (2) 在函数的图像上是否存在点P.使过点P的切线与该图像再无其它公共点?若存在.求出所有满足条件的点的坐标,若不存在.说明理由; (3) 设为函数图像上的任一点.试问点是否也在该图像上?为什么? 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=ax2-2
4+2b-b2
x,g(x)=-
1-(x-a)2
,a,b∈R

(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x0,使得f(x0)是f(x)的最大值,且g(x0)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

(本小题满分13分)

已知函数

(1)当时,求曲线处的切线方程;

(2)设的两个极值点,的一个零点,且证明:存在实数按照某种顺序排列后构成等差数列,并求

 

查看答案和解析>>

设函数
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x,使得f(x)是f(x)的最大值,且g(x)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

设函数
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x,使得f(x)是f(x)的最大值,且g(x)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>


同步练习册答案