18.已知圆E经过点A.且圆心在直线x-2y-3=0上. (1)求圆E的方程, (2)若直线x+y+m=0与圆E交于P.Q两点.且 EP⊥EQ.求m的值 解:(1)线段AB中垂线的方程为2x+y+4=0 它与直线x-2y-3=0的交点为圆心 2分 由两点间距离公式得r2=10 4分 所以.圆的方程为(x+1)2+(y+2)2=10 5分 (2)设圆心到直线的距离为d.由题意 即 8分 得 10分 查看更多

 

题目列表(包括答案和解析)

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知双曲线C:(a>0,b>0)的离心率e=2,A,B为双曲线上两点,线段AB的垂直平分线为x-y-2=0,且|AB|=

①求双曲线C经过二、四象限的渐近线的倾斜角

②试判断在椭圆C的长轴上是否存在一定点N(a,0),使椭圆上的动点M满足的最小值为3,若存在求出所有可能的a值,若不存在说明理由.

查看答案和解析>>


同步练习册答案