题目列表(包括答案和解析)
.(本题满分16分,其中第1小题4分,第2小题6分,第3小题6分,)
如图,已知椭圆
,
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(1)求椭圆和双曲线的标准方程;
(2)设直线
、
的斜率分别为
、
,证明
;
(3)是否存在常数
,使得![]()
恒成立?若存在,求
的值;若不存在,请说明理由.
![]()
(本小题满分16分)已知椭圆
中心为
,右顶点为
,过定点
作直线
交椭圆于
、
两点.
(1)若直线
与
轴垂直,求三角形
面积的最大值;
(2)若
,直线
的斜率为
,求证:
;
(3)在
轴上,是否存在一点
,使直线
和
的斜率的乘积为非零常数?若存在,求出点
的坐标和这个常数;若不存在,说明理由.
(本题满分16分)已知圆
:
,点
在直线![]()
上,过点
作圆
的两条切线,
为两切点,
(1)求切线长
的最小值,并求此时点
的坐标;
(2)点
为直线
与直线
的交点,若在平面内存在定点
(不同于点
,满足:对于圆
上任意一点
,都有
为一常数,求所有满足条件的点
的坐标。
(3)求
的最小值;
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆
过点
,两焦点为
、
,
是坐标原点,不经过原点的直线
与椭圆交于两不同点
、
.
(1)求椭圆C的方程;
(2) 当
时,求
面积的最大值;
(3) 若直线
、
、
的斜率依次成等比数列,求直线
的斜率
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com