题目列表(包括答案和解析)
(本小题满分13分) 已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,准线l与x轴交于点K, 已知|AK|=
|AF|,三角形AFK的面积等于8. (Ⅰ)求p的值;(Ⅱ)过该抛物线的焦点作两条互相垂直的直线l1,l2,与抛物线相交得两条弦,两条弦的中点分别为G,H.求|GH|的最小值.
(本小题满分13分)
已知椭圆
过点
,且点
在
轴上的射影恰为椭圆的一个焦点
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
作两条倾斜角互补的直线与椭圆分别交于
两点.试问:四边形
能否为平行四边形?若能,求出直线
的方程;否则说明理由.
(本小题满分13分)
已知抛物线
经过点A(2,1),过A作倾斜角互补的两条不同直线
.
(1) 求抛物线W的方程及准线方程;
(2) 当直线
与抛物线W相切时,求直线
的方程;
(3) 设直线
分别交抛物线W于B、C两点(均不与4重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.
(本小题满分13分)
设椭圆
的离心率
,右焦点到直线
的距离![]()
为坐标原点.
(I)求椭圆
的方程;
(II)过点
作两条互相垂直的射线,与椭圆
分别交于
两点,证明点
到直
线
的距离为定值,并求弦
长度的最小值.
(本小题满分13分)
已知椭圆
过点
,且点
在
轴上的射影恰为椭圆的一个焦点
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
作两条倾斜角互补的直线与椭圆分别交于
两点.试问:四边形
能否为平行四边形?若能,求出直线
的方程;否则说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com