19.已知函数f(x)=-x+8x,g(x)=6lnx+m (Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t); (Ⅱ)是否存在实数m.使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在.求出m的取值范围,.若不存在.说明理由. 解:(I) 当即时.在上单调递增. 当即时. 当时.在上单调递减. 综上. (II)函数的图象与的图象有且只有三个不同的交点.即函数 的图象与轴的正半轴有且只有三个不同的交点. 当时.是增函数, 当时.是减函数, 当时.是增函数, 当或时. 当充分接近0时.当充分大时. 要使的图象与轴正半轴有三个不同的交点.必须且只须 即 所以存在.使得函数与的图象有且只有三个不同的交点. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=-x+8x,g(x)=6lnx+m

(Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t);

(Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。

查看答案和解析>>

已知函数f(x)=-x2+8x,g(x)6lnxm.(Ⅰ)求f(x)在区间[tt+1]上的最大值h(t);(Ⅱ)是否存在实数m,使得yf(x)的图象与yg(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。

查看答案和解析>>

已知函数f(x)=-x2+8x,g(x)6lnxm.(Ⅰ)求f(x)在区间[tt+1]上的最大值h(t);(Ⅱ)是否存在实数m,使得yf(x)的图象与yg(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。

查看答案和解析>>

已知函数f(x)=-x2+8x,g(x)=6lnx+m.

(1)求f(x)在区间[t,t+1]上的最大值h(t);

(2)若y=f(x)的图象与y=g(x)的图象有且仅有三个不同的交点,求实数m的取值范围.

查看答案和解析>>

已知函数f(x)=-x2+8x,g(x)=m+6lnx

(1)求f(x)在区间[t,t+1]上的最大值h(t);

(2)是否存在实数m,使得y=f(x)的图像与y=g(x)的图像有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>


同步练习册答案