题目列表(包括答案和解析)
(本小题12分)
已知
、
、
分别是△ABC的三个内角A、B、C的对边,设
,
.
(1)求角A的大小; (2)若
,求
的值.
(本小题12分)
已知
、
、
分别是△ABC的三个内角A、B、C的对边,设
,
.
(1)求角A的大小; (2)若
,求
的值.
(本小题满分14分)
设
椭圆方程为
抛物线方程为
如图4所示,过点
作
轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点![]()
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。
![]()
(本小题满分12分) 已知一个四棱锥的三视图如图所示,其中
,且
,
分别为
、
、
的中点
![]()
(1)求证:PB//平面EFG
(2)求直线PA与平面EFG所成角的大小
(3)在直线CD上是否存在一点Q,使二面角
的大小为
?若存在,求出CQ的长;若不存在,请说明理由。
(本小题满分10分)已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是一个等比数列的第二项、第三项、第四项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设
=
(n∈N*),
=b1+b2+…+bn,是否存在最大的整数t,使得任意的n均有
总成立?若存在,求出t;若不存在,请说明理由
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com