题目列表(包括答案和解析)
(本小题满分16分)已知椭圆
中心为
,右顶点为
,过定点
作直线
交椭圆于
、
两点.
(1)若直线
与
轴垂直,求三角形
面积的最大值;
(2)若
,直线
的斜率为
,求证:
;
(3)在
轴上,是否存在一点
,使直线
和
的斜率的乘积为非零常数?若存在,求出点
的坐标和这个常数;若不存在,说明理由.
(2012年高考江苏卷19) (本小题满分16分)
如图,在平面直角坐标系xOy中,椭圆
的左、右焦点分别为
,
.已知
和
都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的离心率;
(2)设A,B是椭圆上位于x轴上方的两点,且直线![]()
与直线
平行,
与
交于点P.
(i)若
,求直线
的斜率;
(ii)求证:
是定值.
(本小题满分16分)如图,在平面直角坐标系
中,已知
,
,
,直线
与线段
、
分别交于点
、
.
(Ⅰ)当
时,求以
为焦点,且过
中点的椭圆的标准方程;
(Ⅱ)过点
作直线
∥
交
于点
,记
的外接圆为圆
.
①
求证:圆心
在定直线
上;
②
圆
是否恒过异于点
的一个定点?若过,求出该点的坐标;若不过,请说明理由.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com