已知为正三棱柱,是的中点. (Ⅰ)证明:平面, (Ⅱ)若,. ①求二面角的大小, ②若为的中点, 求三棱锥的体积.------12分 河南省实验中学2008-2009学年下期期中考试卷 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,已知三棱柱ABCA1B1C1的侧棱与底面垂直,AA1ABAC=1,ABACMN分别是CC1BC的中点,点PA1B1上,且满足=λ(λR).

(1)证明:PNAM

(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该最大角的正切值;

(3)若平面PMN与平面ABC所成的二面角为45°,试确定点P的位置.

 

查看答案和解析>>

 (本小题满分12分)

如图,已知三棱柱ABCA1B1C1的侧棱与底面垂直,AA1ABAC=1,ABACMN分别是CC1BC的中点,点PA1B1上,且满足λ(λ∈R).

(1)证明:PNAM

(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该最大角的正切值;

(3)若平面PMN与平面ABC所成的二面角为45°,试确定点P的位置.

查看答案和解析>>

 (本小题满分12分)

如图,已知三棱柱ABCA1B1C1的侧棱与底面垂直,AA1ABAC=1,ABACMN分别是CC1BC的中点,点PA1B1上,且满足λ(λ∈R).

(1)证明:PNAM

(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该最大角的正切值;

(3)若平面PMN与平面ABC所成的二面角为45°,试确定点P的位置.

查看答案和解析>>

(本小题满分12分)如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且

(1)证明:无论取何值,总有

(2)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;

(3)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分12分)如图,已知正三棱柱的各棱长都是4, 的中点,动点在侧棱上,且不与点重合.

(I)当时,求证:

(II)设二面角的大小为,求的最小值.

 

 

 

 

查看答案和解析>>


同步练习册答案