12.椭圆+=1上一点到一个焦点的距离为3.则它到直线=-的距离为 . 查看更多

 

题目列表(包括答案和解析)

椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
F1M
F2M
=0

(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
2

①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,-
3
3
)
、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任一点P到两个焦点的距离的和为6,焦距为4
2
,A,B分别是椭圆的左右顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设f(x)=
S2(x)
x+3
,求函数f(x)的最大值.

查看答案和解析>>

焦点在x轴上的椭圆C的一个顶点为B(0,-1),右焦点到直线x-y+2
2
=0的距离为3.
(1)求椭圆C的方程;
(2)是否存在斜率为k(k≠0)的直线l与椭圆C交于M,N两点,使得|BM|=|BN|?若存在,求出k的取值范围;若不存在,请说出理由.

查看答案和解析>>

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任一点P到两个焦点的距离的和为6,焦距为4
2
,A,B分别是椭圆的左右顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设f(x)=
S2(x)
x+3
,求函数f(x)的最大值.

查看答案和解析>>

椭圆G:的两个焦点,M是椭圆上一点。
(1)若M的坐标为(2,0),椭圆的离心率,求a,b的值;
(2)若
①求椭圆的离心率e的取值范围;
②当椭圆的离心率e取最小值时,点N(0,3)到椭圆上的点的最远距离为,求此时椭圆G的方程。

查看答案和解析>>


同步练习册答案