题目列表(包括答案和解析)

 0  138046  138054  138060  138064  138070  138072  138076  138082  138084  138090  138096  138100  138102  138106  138112  138114  138120  138124  138126  138130  138132  138136  138138  138140  138141  138142  138144  138145  138146  138148  138150  138154  138156  138160  138162  138166  138172  138174  138180  138184  138186  138190  138196  138202  138204  138210  138214  138216  138222  138226  138232  138240  447348 

例3. 图2中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态。另一质量与B相同滑块A,从导轨上的P点以某一初速度向B滑行,当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好返回出发点P并停止,滑块A和B与导轨的滑动摩擦因数都为,运动过程中弹簧最大形变量为l2,重力加速度为g,求A从P出发时的初速度v0。

图2

解析:令A、B质量皆为m,A刚接触B时速度为v1(碰前)

由功能关系,有

A、B碰撞过程中动量守恒,令碰后A、B共同运动的速度为v2

碰后A、B先一起向左运动,接着A、B一起被弹回,在弹簧恢复到原长时,设A、B的共同速度为v3,在这一过程中,弹簧势能始末状态都为零,利用功能关系,有

此后A、B开始分离,A单独向右滑到P点停下,由功能关系有

由以上各式,解得

试题详情

例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图1所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。

图1

(1)求弹簧长度刚被锁定后A球的速度。

(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。

解析:(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒得当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒得,由以上两式求得A的速度

(2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒,有撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D的动能,设D的速度为v3,则有

以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动量守恒得

当弹簧伸到最长时,其势能最大,设此势能为EP”,由能量守恒,有解以上各式得

说明:对弹簧模型来说“系统具有共同速度之时,恰为系统弹性势能最多”。

试题详情

例1. 在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为EP,则碰前A球的速度等于(  )

A. B. C. D.

解析:设碰前A球的速度为v0,两球压缩最紧时的速度为v,根据动量守恒定律得出,由能量守恒定律得,联立解得,所以正确选项为C。

试题详情

与松弛的绳子相连接的物体,在突然被绳子紧拉一下时,其机械能会发生突变,转变为其他形式的能,解这类题目要特别注意,否则将发生一系列连锁错误。

例3. 在光滑水平面上,有一质量的小车,通过一根几乎不可伸长的轻绳与另一质量的拖车连接,一质量的物体放在拖车的平板上,物体与平板间的动摩擦因数,开始时,拖车静止,绳未拉紧,如图3所示,小车以的速度前进,求:

(1)以同一速度前进时,其速度的大小;

(2)物体在拖车平板上移动的距离。

图3

分析与解答:整个运动过程可分成两个阶段:①绳子被拉紧时,m1与m2获得共同速度,m1、m2系统的动量守恒,由于绳子由未绷紧到绷紧,会有机械能的损失(在这个问题上很容易被忽视),此时m3的速度还为零;②绳子拉紧后,在摩擦力作用下m3加速,m1与m2减速,m3与m2间有相对滑动,直至三者速度相等,一起运动。此阶段系统动量守恒,机械能不守恒,但可由动能定理求解。

绳刚被拉紧时,设m1与m2的共同速度为v1,m1与m2系统动量守恒,有:

解得:

再对m1、m2、m3系统,由动量守恒得:

解得:

绳拉紧后,物体在拖车上相对滑动,设拖车位移为s1,物体位移为s2,分别对两车、物体用动能定理有:

小车和拖车:

物块:

可解得物体在拖车上移动的距离:

试题详情

与绳子相连接的物体,由于某些时候绳子的形变发生突变,它的速度会随着发生突变,对这类问题若不加仔细分析,引起注意,接下来其他量的求解就会随着出错,因此必须引起高度重视。

例2. 如图2所示,质量为m的小球用长为L的细绳系于O点,把小球拿到O点正上方且使细绳拉直的位置A后,以的速度水平向右弹出(空气阻力不计)

(1)小球从弹出至下落到与O点等高的位置这一过程中,小球做什么运动,请说明理由;

(2)求小球到达最低点时细绳上的拉力大小。

图2

分析与解答:(1)设球在最高点只受重力且做圆周运动,则有:

因为,所以小球做平抛运动。

(2)设小球下落到与O点等高的位置时,在水平方向的位移为x,有,得:

水平方向速度:

竖直方向的速度:

在此,小球在水平方向的速度突变为0,消失了,只剩下竖直向下的速度,此后,小球以为初速向下做圆周运动(同学们往往在此发生错误)。设小球下落到最低点时速度为,绳子拉力为,由机械能守恒:

又由牛顿第二定律有:

解得:

试题详情

由于绳子的特点,它的弹力可发生突变,它与弹簧不同,弹簧的弹力不能发生突变,同学们一定要注意区别,不能混淆。

例1. 如图1所示,一条轻弹簧OB和一根细绳OA共同拉住一个质量为m的小球,平衡时细绳OA是水平的,弹簧与竖直方向的夹角是,若突然剪断细绳OA,则在刚剪断的瞬间,弹簧拉力的大小是_________,小球加速度的方向与竖直方向的夹角等于_________,若将弹簧改为一根细绳,则在OA线剪断瞬间,绳OB的弹力大小是________,小球加速度方向与竖直方向夹角等于__________。

图1

分析与解答:这是一道典型的要区分细绳与弹簧有什么不同的题,只要我们认清细绳可发生突变,而弹簧不能发生突变的情况,则这就不是一道难题。

细绳未剪断前,小球所受重力,弹簧的拉力和细绳的拉力是平衡的,即重力与弹簧的拉力的合力是沿水平方向向右,大小,细绳剪断后,弹簧的形变不能马上改变,弹力仍保持原值,因重力、弹簧弹力不变,所以此时小球加速度方向是沿水平向右,即与竖直方向夹角是,若弹簧改用细绳,则OA线剪断瞬间,细绳OB的形变发生突变,小球有沿圆弧切线方向的加速度,故重力与绳OB的拉力的合力必沿切线方向,由此求得,夹角为

试题详情

5.(2008年高考全国卷Ⅱ)如图6-3-12所示,一质量为M的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m的子弹以水平速度v0射入物块后,以水平速度v0/2射出.重力加速度为g.求:

(1)此过程中系统损失的机械能;

(2)此后物块落地点离桌面边缘的水平距离.

解析:(1)设子弹穿过物块后物块的速度为v,由动量守恒得mv0m+Mv①  www.k@s@5@               高#考#资#源#网

解得vv0

系统的机械能损失为

ΔEmv02-[m()2+Mv2]③

由②③式得ΔE=(3-)mv02.④

(2)设物块下落到地面所需时间为t,落地点距桌面边缘的水平距离为s,则hgt2

svt

由②⑤⑥式得s=.

答案:(1)(3-)mv02 (2)

试题详情

4.如图6-3-11所示,在光滑水平面上有质量分别为3mmab两物体,a与轻弹簧一端相连,弹簧的另一端固定在墙上.开始弹簧处于原长,b以速度va发生正碰,碰后两物体以相同速度压缩弹簧,当弹簧被压缩到最短时,它具有的弹性势能为( )

A.mv2/2            B.mv2/8

C.mv2/4            D.mv2/16

解析:选B.ab发生正碰,获得共速v,由动量守恒:mv=(m+3m)v,然后以v去压缩弹簧,由机械能守恒:Ep=(m+3m)v2/2,联立解得Epmv2/8

试题详情

3.如图6-3-10所示,质量为M、长为L的长木板放在光滑水平面上,一个质量也为M的物块(视为质点)以一定的初速度从左端冲上木板,如果长木板是固定的,物块恰好停在木板的右端,如果长木板不固定,则物块冲上后在木板上最多能滑行的距离为( )

A.L              B.3L/4

C.L/4             D.L/2

解析:选D.固定时,由动能定理得:μMgLMv02,后来木板不固定有Mv0=2MvμMgsMv02-·2Mv2,故得sL/2.

试题详情

2.(2009年宜昌模拟)如图6-3-9所示,小车M由光滑的弧形段AB和粗糙的水平段BC组成,静止在光滑水平面上.当小车固定时,从A点由静止滑下的物块mC点恰好停止.如果小车不固定,物块m仍从A点静止滑下,( )

A.还是滑到C点停住   B.滑到BC间某处停住

C.会冲出C点落到车外     D.上述三种情况都有可能

解析:选A.小车固定时恰能滑到C点,机械能会全部转化为内能.当小车不固定时,由动量守恒知,小车与物体的最终速度都为零,故机械能全部转化为内能,因此两次滑过的路程相等,所以A对.

试题详情


同步练习册答案