4. 已知=.=且//..θ∈(0,).(1)求k与θ的关系式k=f(θ),(2)求k=f(θ)的最小值. 查看更多

 

题目列表(包括答案和解析)

已知向量a=(cosα ,sinα),b=(cosβ,sinβ),且ab之间满足关系:|ka+b|=|a-kb|,其中k>0。
(1)求将ab的数量积用k表示的解析式f(k);
(2)a能否和b垂直?a能否和b平行?若不能,则说明理由;若能,则求出对应的k值;
(3)求ab夹角的最大值。

查看答案和解析>>

(本题满分10分)已知向量="(cosα," sinα), b="(cosβ," sinβ),且b之间满足关系:|k+b|=|-kb|,其中k>0.
(1)求将b的数量积用k表示的解析式f(k);
(2)能否和b垂直?能否和b平行?若不能,则说明理由;若能,则求出对应的k值;
(3)求b夹角的最大值。

查看答案和解析>>

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(I)求椭圆的方程;

(II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足O为坐标原点),当 时,求实数的取值范围.

【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。

第一问中,利用

第二问中,利用直线与椭圆联系,可知得到一元二次方程中,可得k的范围,然后利用向量的不等式,表示得到t的范围。

解:(1)由题意知

 

查看答案和解析>>

已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。

第一问中,可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

第二问中,

假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得

代入1,2式中得到范围。

(Ⅰ) 可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

 (Ⅱ) 假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是

 

查看答案和解析>>


同步练习册答案