若.由已知条件易得 即,显然也有. 查看更多

 

题目列表(包括答案和解析)

 

已知函数.

(Ⅰ)讨论函数的单调性; 

(Ⅱ)设,证明:对任意.

    1.选修4-1:几何证明选讲

    如图,的角平分线的延长线交它的外接圆于点

(Ⅰ)证明:∽△;

(Ⅱ)若的面积,求的大小.

证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.

因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.

故△ABE∽△ADC.

(Ⅱ)因为△ABE∽△ADC,所以,即AB·ACAD·AE.

SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE.

则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.

 

查看答案和解析>>

学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数的分布列和数学期望。

【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得

第二问中可能的取值为0,1,2,3  ,       

 , 

从而得到分布列和期望值

解:(I)由已知条件得 ,即,则的值为

 (Ⅱ)可能的取值为0,1,2,3  ,       

 , 

   的分布列为:(1分)

 

0

1

2

3

 

 

 

 

所以 

 

查看答案和解析>>

(2008•宝山区二模)已知{an}是公差d大于零的等差数列,对某个确定的正整数k,有a12+ak+12≤M(M是常数).
(1)若数列{an}的各项均为正整数,a1=2,当k=3时,M=100,写出所有这样数列的前4项;
(2)若数列{an}的各项均为整数,对给定的常数d,当数列由已知条件被唯一确定时,证明a1≤0;
(3)求S=ak+1+ak+2+…+a2k+1的最大值及此时数列{an}的通项公式.

查看答案和解析>>

在△ABC中,已知(b+c):(c+a):(a+b)=4:5:6,给出下列结论:
①由已知条件,这个三角形被唯一确定;
②△ABC一定是钝角三角形;
③sinA:sinB:sinC=7:5:3;
④若b+c=8,则△ABC的面积是
15
3
2

其中正确结论的序号是
 

查看答案和解析>>

已知{an}是公差d大于零的等差数列,对某个确定的正整数k,有a12+ak+12≤M(M是常数).
(1)若数列{an}的各项均为正整数,a1=2,当k=3时,M=100,写出所有这样数列的前4项;
(2)当k=5,M=100时,对给定的首项,若由已知条件该数列被唯一确定,求数列{an}的通项公式;
(3)记Sk=a1+a2+…+ak,对于确定的常数d,当Sk取到最大值时,求数列{an}的首项.

查看答案和解析>>


同步练习册答案