题目列表(包括答案和解析)
如图,在三棱锥
中,平面
平面
,
,
,
,
为
中点.(Ⅰ)求点B到平面
的距离;(Ⅱ)求二面角
的余弦值.
![]()
【解析】第一问中利用因为
,
为
中点,所以![]()
而平面
平面
,所以
平面
,再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系得
,
,
,
,
,
,
故平面
的法向量
而
,故点B到平面
的距离![]()
第二问中,由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
解:(Ⅰ)因为
,
为
中点,所以![]()
而平面
平面
,所以
平面
,
再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系,得
,
,
,
,
,
,故平面
的法向量![]()
而
,故点B到平面
的距离![]()
(Ⅱ)由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
如图,四棱锥P-ABCD中,底面ABCD为菱形,PA
底面ABCD,AC=
,PA=2,E是PC上的一点,PE=2EC。
![]()
(I)
证明PC
平面BED;
(II) 设二面角A-PB-C为90°,求PD与平面PBC所成角的大小
【解析】本试题主要是考查了四棱锥中关于线面垂直的证明以及线面角的求解的运用。
从题中的线面垂直以及边长和特殊的菱形入手得到相应的垂直关系和长度,并加以证明和求解。
解法一:因为底面ABCD为菱形,所以BD
AC,又
![]()
![]()
![]()
![]()
【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题和相似,底面也是特殊的菱形,一个侧面垂直于底面的四棱锥问题,那么创新的地方就是点E的位置的选择是一般的三等分点,这样的解决对于学生来说就是比较有点难度的,因此最好使用空间直角坐标系解决该问题为好。
已知直三棱柱
中,
,
,
是
和
的交点, 若
.
(1)求
的长; (2)求点
到平面
的距离;
(3)求二面角
的平面角的正弦值的大小.
![]()
【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACC
A
为正方形,
AC=3
第二问中,利用面BB
C
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为![]()
解法一: (1)连AC
交A
C于E, 易证ACC
A
为正方形,
AC=3
…………… 5分
(2)在面BB
C
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
… 8分
(3) 易得AC![]()
面A
CB,
过E作EH
A
B于H, 连HC
,
则HC![]()
A
B
![]()
C
HE为二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=![]()
二面角C
-A
B-C的平面角的正弦大小为
……… 12分
解法二: (1)分别以直线C
B、CC
、C
A为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
![]()
=(2, -
, -
),
=(0,
-3, -h) ……… 4分
![]()
·
=0,
h=3
(2)设平面A
BC
得法向量
=(a, b, c),则可求得
=(3, 4, 0) (令a=3)
点A到平面A
BC
的距离为H=|
|=
……… 8分
(3) 设平面A
BC的法向量为
=(x, y, z),则可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
满足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小为![]()
如图,四棱柱
中,
平面
,底面
是边长为
的正方形,侧棱
.
![]()
(1)求三棱锥
的体积;
(2)求直线
与平面
所成角的正弦值;
(3)若棱
上存在一点
,使得
,当二面角
的大小为
时,求实数
的值.
【解析】(1)在
中,![]()
.
(3’)
(2)以点D为坐标原点,建立如图所示的空间直角坐标系
,则
(4’)
,设平面
的法向量为
,
由
得
,
(5’)
则
,
. (7’)
(3)![]()
设平面
的法向量为
,由
得
,
(10’)
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com