解得所求直线为错误分析 此处解法共有三处错误: 查看更多

 

题目列表(包括答案和解析)

已知向量,且,A为锐角,求:

(1)角A的大小;

(2)求函数的单调递增区间和值域.

【解析】第一问中利用,解得   又A为锐角                 

      

第二问中,

 解得单调递增区间为

解:(1)        ……………………3分

   又A为锐角                 

                              ……………………5分

(2)

                                                  ……………………8分

  由 解得单调递增区间为

                                                  ……………………10分

 

 

查看答案和解析>>

与直线3x+4y+1=0平行,且相距为4.如果原点位于已知和所求直线之间,则所求直线为.


  1. A.
    3x+4y-19=0
  2. B.
    3x+4y-3=0
  3. C.
    3x+4y+5=0
  4. D.
    3x+4y+21=0

查看答案和解析>>

求曲线及直线所围成的平面图形的面积.

【解析】本试题主要是考查了定积分的运用。

解:做出曲线xy=1及直线y=x,y=3的草图,则所求面积为阴影部分的面积

解方程组 得直线y=x与曲线xy=1的交点坐标为(1,1)      

同理得:直线y=x与曲线y=3的交点坐标为(3,3)

        直线y=3与曲线xy=1的交点坐标为(,3)………………3分

因此,所求图形的面积为

 

查看答案和解析>>

某大学高等数学老师上学期分别采用了A,B两种不同的教学方式对甲、乙两个大一新生班进行教改试验(两个班人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名同学的上学期数学期末考试成绩,得到茎叶图如图:
(Ⅰ)从乙班这20名同学中随机抽取两名高等数学成绩不得低于85分的同学,求成绩为90分的同学被抽中的概率;
(Ⅱ)学校规定:成绩不低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班 乙班 合计
优秀
不优秀
合计
下面临界值表仅供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
(Ⅲ)从乙班高等数学成绩不低于85分的同学中抽取2人,成绩不低于90分的同学得奖金100元,否则得奖金50元,记ξ为这2人所得的总奖金,求ξ的分布列和数学期望.

查看答案和解析>>

(本小题满分12分)

某大学高等数学老师上学期分别采用了两种不同的教学方式对甲、乙两个大一新生班进行教改试验(两个班人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名同学的上学期数学期末考试成绩,得到茎叶图如下:

(Ⅰ)依茎叶图判断哪个班的平均分高?

(Ⅱ)从乙班这20名同学中随机抽取两名高等数学成绩不得低于85分的同学,求成绩为90分的同学被抽中的概率;

(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”

 

甲班

乙班

合计

优秀

 

 

 

不优秀

 

 

 

合计

 

 

 

下面临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:其中) 

(Ⅳ)从乙班高等数学成绩不低于85分的同学中抽取2人,成绩不低于90分的同学得奖金100元,否则得奖金50元,记为这2人所得的总奖金,求的分布列和数学期望。

 

查看答案和解析>>


同步练习册答案