错误解法 依题意.可知曲线是抛物线. 查看更多

 

题目列表(包括答案和解析)

在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:

(1)选择题得满分(50分)的概率;

(2)选择题所得分数的数学期望。

【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:

第二问中,依题意,该考生得分的范围为{35,40,45,50}         

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                            

得分为40分的概率为: 

同理求得,得分为45分的概率为: 

得分为50分的概率为:

得到分布列和期望值。

解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:                   …………5分

(2)依题意,该考生得分的范围为{35,40,45,50}            …………6分

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                              …………7分

得分为40分的概率为:     …………8分

同理求得,得分为45分的概率为:                     …………9分

得分为50分的概率为:                      …………10分

所以得分的分布列为

35

40

45

50

 

数学期望

 

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生:
(Ⅰ)得50分的概率;
(Ⅱ)设该考生所得分数为ξ,求ξ的数学期望.

查看答案和解析>>

在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生:
(Ⅰ)得50分的概率;
(Ⅱ)得40分的概率.

查看答案和解析>>

(2012•甘肃一模)(理科)某中学高一年级美术学科开设书法、绘画、雕塑三门校本选修课,学生可选也可不选,学生是否选修哪门课互不影响.已知某学生只选修书法的概率为0.08,只选修书法和绘画的概率是0.12,至少选修一门的概率是0.88.
(1)依题意分别计算该学生选修书法、绘画、雕塑三门校本选修课的概率;
(2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,求随机变量ξ的分布列和数学期望.

查看答案和解析>>


同步练习册答案