所以所以点是所求射影的焦点.依题意.射影是一条抛物线.开口向右.顶点在原点. 查看更多

 

题目列表(包括答案和解析)

已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。

第一问中,可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

第二问中,

假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得

代入1,2式中得到范围。

(Ⅰ) 可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

 (Ⅱ) 假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是

 

查看答案和解析>>

已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)若A,B是所求轨迹上的两个点,满足OA⊥OB(0为坐标原点),求证:直线AB经过一个定点.
(3)过点F的直线l2交轨迹于两点P、Q,交直线l1于点R,求
RP
RQ
的最小值.

查看答案和解析>>

已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)若A,B是所求轨迹上的两个点,满足OA⊥OB(0为坐标原点),求证:直线AB经过一个定点.
(3)过点F的直线l2交轨迹于两点P、Q,交直线l1于点R,求的最小值.

查看答案和解析>>

已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)若A,B是所求轨迹上的两个点,满足OA⊥OB(0为坐标原点),求证:直线AB经过一个定点.
(3)过点F的直线l2交轨迹于两点P、Q,交直线l1于点R,求的最小值.

查看答案和解析>>

已知函数,它的一个极值点是

(Ⅰ) 求的值及的值域;

(Ⅱ)设函数,试求函数的零点的个数.

 

查看答案和解析>>


同步练习册答案