即所求射影的方程为 (3) 推理的训练数学推理是由已知的数学命题得出新命题的基本思维形式.它是数学求解的核心.以已知的真实数学命题.即定义.公理.定理.性质等为依据.选择恰当的解题方法.达到解题目标.得出结论的一系列推理过程.在推理过程中.必须注意所使用的命题之间的相互关系(充分性.必要性.充要性等).做到思考缜密.推理严密. 查看更多

 

题目列表(包括答案和解析)

求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.

【解析】利用圆心和半径表示圆的方程,首先

设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3,  ………4分

和y=-2x联立解得x=1,y=-2,即圆心(1,-2)  

∴r=,

故所求圆的方程为:=2

解:法一:

设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3,  ………4分

和y=-2x联立解得x=1,y=-2,即圆心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圆的方程为:=2                   ………………………12分

法二:由条件设所求圆的方程为: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圆的方程为:=2             ………………………12分

其它方法相应给分

 

查看答案和解析>>

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得.

(1)求椭圆的标准方程;           (2)求直线l的方程.

【解析】(1)中利用点F1到直线x=-的距离为可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到椭圆的方程。(2)中,利用,设出点A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在椭圆+y2=1上, 得到坐标的值,然后求解得到直线方程。

解:(1)∵F1到直线x=-的距离为,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵椭圆的焦点在x轴上,∴所求椭圆的方程为+y2=1.……4分

(2)设A(x1,y1)、B(x2,y2).由第(1)问知

,

……6分

∵A、B在椭圆+y2=1上,

……10分

∴l的斜率为.

∴l的方程为y=(x-),即x-y-=0.

 

查看答案和解析>>

已知x,y∈R+且x+y=4,求
1
x
+
2
y
的最小值.某学生给出如下解法:由x+y=4得,4≥2
xy
①,即
1
xy
1
2
②,又因为
1
x
+
2
y
≥2
2
xy
③,由②③得
1
x
+
2
y
2
④,即所求最小值为
2
⑤.请指出这位同学错误的原因
 

查看答案和解析>>

已知x>0,y>0且x+y=4,求的最小值.某学生给出如下解法:由x+y=4,得4≥2①,即②,又因为≥2③,由②③得④,即所求最小值为⑤.请指出这位同学错误的原因:__________.

查看答案和解析>>

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>


同步练习册答案