题目列表(包括答案和解析)
若数列
满足
,其中
为常数,则称数列
为等方差数列
已知等方差数列
满足
。
(Ⅰ)求数列
的通项公式;
(Ⅱ)记
,则当实数
大于4时,不等式
能否对于一切的
恒成立?请说明理由
若数列
满足
,其中
为常数,则称数列
为等方差数列,已知等方差数列
满足
,
.
(1)求数列
的通项公式;
(2)求数列
的前
项和;
(3)记
,则当实数
大于4时,不等式
能否对于一切的
恒成立?请说明理由。
若数列
满足
,其中
为常数,则称数列
为等方差数列。已知等方差数列
满足
,
,![]()
(Ⅰ)求数列
的通项公式;
(Ⅱ)求数列
的前
项和;
(08年沈阳二中四模)(12分)已知数列
有
,
(常数
),对任意的正整数
,
,并有
满足
。
(1)求
的值;
(2)试确定数列
是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(3)(理科生答文科生不答)对于数列
,假如存在一个常数
使得对任意的正整数
都有
,且
,则称
为数列
的“上渐近值”,令
,求数列
的“上渐近值”。
天津精通高考复读学校数学教研组组长 么世涛
一、选择题 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用
代替
得
4.
5.
,
或
6.
7.略
8.

二、填空题:9.60; 10. 15:10:20 ; 11.
; 12.
;
13.0.74 ; 14. ①、
;②、圆;③.
提示:
9.
10.
,
,
11.
,
12.
,
,
,
,
13.
14.略
三、解答题
15. 解:(1)
.
(2)设抽取
件产品作检验,则
,
,得:
,即 
故至少应抽取8件产品才能满足题意.
16. 解:由题意得
,
,原式可化为
,
而
,
故原式=
.
17. 解:(1)显然
,连接
,∵
,
,
∴
.由已知
,∴
,
.
∵
∽
,
,
∴
即
.
∴
.
(2)
当且仅当
时,等号成立.此时
,即
为
的中点.于是由
,知平面
,
是其交线,则过
作
。
∴
就是
与平面
所成的角.由已知得
,
,
∴
,
,
.
(3) 设三棱锥
的内切球半径为
,则

∵
,
,
,
,
,
∴
.
18. 解: (1)
,
(2) ∵
,
∴当
时,
∴当
时,
,
∵
,
,
,
.
∴
的最大值为
或
中的最大者.
∵ 
∴ 当
时,
有最大值为
.
19.(1)解:∵函数
的图象过原点,
∴
即
,
∴
.
又函数
的图象关于点
成中心对称,
∴
,
.
(2)解:由题意有
即
,
即
,即
.
∴数列{
}是以1为首项,1为公差的等差数列.
∴
,即
. ∴
.
∴
,
,
,
.
(3)证明:当
时,

故
20. (1)解:∵
,又
,
∴
.
又∵
,且
∴
.
(2)解:由
,
,
猜想
(3)证明:用数学归纳法证明:
①当
时,
,猜想正确;
②假设
时,猜想正确,即
1°若
为正奇数,则
为正偶数,
为正整数,
2°若
为正偶数,则
为正整数,
,又
,且
所以
即当
时,猜想也正确
由①,②可知,
成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1.
即

2.
即 
3.
即
,也就是
,
4.先确定是哪两个人的编号与座位号一致,有
种情况,如编号为1的人坐1号座位,且编号为2的人坐2号座位有以下情形:
|