题目列表(包括答案和解析)
已知中心在坐标原点,焦点在
轴上的椭圆C;其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点
(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求椭圆C的标准方程为![]()
第二问中,
假设存在这样的直线
,设
,MN的中点为![]()
因为|ME|=|NE|所以MN
EF所以![]()
(i)其中若
时,则K=0,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求椭圆C的标准方程为![]()
(Ⅱ) 假设存在这样的直线
,设
,MN的中点为![]()
因为|ME|=|NE|所以MN
EF所以![]()
(i)其中若
时,则K=0,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得,![]()
,得
……② ……………………9分
则
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
综上(i)(ii)可知,存在这样的直线
,其斜率k的取值范围是![]()
.椭圆![]()
>
>
与直线
交于
、
两点,且
,其
中
为坐标原点。
1)求
的值;
2)若椭圆的离心率
满足
,求椭圆长轴的取值范围。
天津精通高考复读学校数学教研组组长 么世涛
一、选择题 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用
代替
得
4.
5.
,
或
6.
7.略
8.

二、填空题:9.60; 10. 15:10:20 ; 11.
; 12.
;
13.0.74 ; 14. ①、
;②、圆;③.
提示:
9.
10.
,
,
11.
,
12.
,
,
,
,
13.
14.略
三、解答题
15. 解:(1)
.
(2)设抽取
件产品作检验,则
,
,得:
,即 
故至少应抽取8件产品才能满足题意.
16. 解:由题意得
,
,原式可化为
,
而
,
故原式=
.
17. 解:(1)显然
,连接
,∵
,
,
∴
.由已知
,∴
,
.
∵
∽
,
,
∴
即
.
∴
.
(2)
当且仅当
时,等号成立.此时
,即
为
的中点.于是由
,知平面
,
是其交线,则过
作
。
∴
就是
与平面
所成的角.由已知得
,
,
∴
,
,
.
(3) 设三棱锥
的内切球半径为
,则

∵
,
,
,
,
,
∴
.
18. 解: (1)
,
(2) ∵
,
∴当
时,
∴当
时,
,
∵
,
,
,
.
∴
的最大值为
或
中的最大者.
∵ 
∴ 当
时,
有最大值为
.
19.(1)解:∵函数
的图象过原点,
∴
即
,
∴
.
又函数
的图象关于点
成中心对称,
∴
,
.
(2)解:由题意有
即
,
即
,即
.
∴数列{
}是以1为首项,1为公差的等差数列.
∴
,即
. ∴
.
∴
,
,
,
.
(3)证明:当
时,

故
20. (1)解:∵
,又
,
∴
.
又∵
,且
∴
.
(2)解:由
,
,
猜想
(3)证明:用数学归纳法证明:
①当
时,
,猜想正确;
②假设
时,猜想正确,即
1°若
为正奇数,则
为正偶数,
为正整数,
2°若
为正偶数,则
为正整数,
,又
,且
所以
即当
时,猜想也正确
由①,②可知,
成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1.
即

2.
即 
3.
即
,也就是
,
4.先确定是哪两个人的编号与座位号一致,有
种情况,如编号为1的人坐1号座位,且编号为2的人坐2号座位有以下情形:
|