题目列表(包括答案和解析)
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)设函数![]()
(1)求函数
的单调区间;
(2)若当
时,不等式
恒成立,求实数
的取值范围;w.w.w.k.s.5.u.c.o.m
(本小题满分14分)
已知
,其中
是自然常数,![]()
(1)讨论
时,
的单调性、极值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求证:在(1)的条件下,
;
(3)是否存在实数
,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
的通项公式;
(II)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
D
A
A
D
B
C
C
B
C
D
二、填空题
11.
cosx+sinx _ 12.
13._____ -1____________ 14.
15.
16.
17.
三、解答题
18.解:由椭圆的标准方程知椭圆的焦点为
,离心率为
………………3分
因为双曲线与椭圆有相同的焦点,所以,双曲线焦点在x轴上,c=4,………………2分
又双曲线与椭圆的离心率之和为
,故双曲线的离心率为2,所以a=2………………4分
又b2=c2-a2=16-4=12。………………………………………………………………………2分
所以双曲线的标准方程为
。………………………………………………1分
19.解:p真:m<0…………………………………………………………………………2分
q真:
……………………………………………………………2分
故-1<m<1。…………………………………………………………………………………2分
由
和
都是假命题知:p真q假,………………………………………………4分
故
。………………………………4分
20.解:(1)设|PF2|=x,则|PF1|=2a-x……………………………………………………2分
∵
,∴
, ∴
…………1分
∴
,……………………………………………………………………2分
………………………………2分
(2)由题知a=4,
,故
………………………………………………1分
由
得
,…………………………………………………………………1分
又
……………………………………2分
故
,代入椭圆方程得
,………………………………………2分
故Q点的坐标为
,
,
,
。
…………………………………………………………………………………………………2分
21.解:(1)由函数
,求导数得
,…1分
由题知点P在切线上,故f(1)=4,…………………………………………………………1分
又切点在曲线上,故1+a+b+c=4①…………………………………………………………1分
且
,故3+2a+b=3②………………………………………………………………1分
③……………………2分
故
……………………1分
(2)
…………………………1分
x

-2




+
0
-
0
+


极大值

极小值

有表格或者分析说明…………………………………………………………………………3分

,…………………………………………………………2分
∴f(x)在[-3,1]上最大值为13。故m的取值范围为{m|m>13}………………………2分
22.解:(1)由题意设过点M的切线方程为:
,…………………………1分
代入C得
,则
,………………2分
,即M(-1,
).………………………………………2分
另解:由题意得过点M的切线方程的斜率k=2,…………………………………………1分
设M(x0,y0),
,………………………………………………………………1分
由导数的几何意义可知2x0+4=2,故x0= -1,……………………………………………2分
代入抛物线可得y0=
,点M的坐标为(-1,
)……………………………………1分
(2)假设在C上存在点
满足条件.设过Q的切线方程为:
,代入
,
则
,
且
.………………………………………………………2分
若
时,由于
,…………………2分
当a>0时,有
∴
或
;……………………………………2分
当a≤0时,∵k≠0,故 k无解。……………………………………………………1分
若k=0时,显然
也满足要求.…………………………………………1分
综上,当a>0时,有三个点(-2+
,
),(-2-
,
)及(-2,-
),且过这三点的法线过点P(-2,a),其方程分别为:
x+2
y+2-2a
=0,x-2
y+2+2a
=0,x=-2。
当a≤0时,在C上有一个点(-2,-
),在这点的法线过点P(-2,a),其方程为:x=-2。……………………………………………………………………………………3分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com