22.已知点是抛物线上的两个动点.是坐标原点.向量满足.设圆的方程为.(1)证明线段是圆的直径,(2)当圆的圆心到直线的距离的最小值为时.求的值. 2006年普通高等学校招生全国统一考试数学第Ⅰ卷 参考公式:如果事件互斥.那么如果事件相互独立.那么球的表面积公式.其中表示球的半径球的体积公式.其中表示球的半径如果事件在一次试验中发生的概率是.那么次独立重复试验中恰好发生次的概率 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)已知抛物线

   (1)设是C1的任意两条互相垂直的切线,并设,证明:点M的纵坐标为定值;

   (2)在C1上是否存在点P,使得C1在点P处切线与C2相交于两点A、B,且AB的中垂线恰为C1的切线?若存在,求出点P的坐标;若不存在,说明理由。

查看答案和解析>>

(本小题满分14分)已知抛物线,椭圆经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆上的点,设的坐标为是已知正实数),求之间的最短距离.

查看答案和解析>>

(本小题满分14分)
已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线
(1) 求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若的值.

查看答案和解析>>

(本小题满分14分)

已知椭圆的中心在坐标原点,两个焦点分别为,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且交于点.

(1) 求椭圆的方程;

(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.

 

查看答案和解析>>

(本小题满分14分)

已知抛物线的顶点为坐标原点,焦点在轴上. 且经过点

(1)求抛物线的方程;

(2)若动直线过点,交抛物线两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由.

 

查看答案和解析>>


同步练习册答案