题目列表(包括答案和解析)
((本小题共13分)
若数列
满足
,数列
为
数列,记
=
.
(Ⅰ)写出一个满足
,且
〉0的
数列
;
(Ⅱ)若
,n=2000,证明:E数列
是递增数列的充要条件是
=2011;
(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列
,使得
=0?如果存在,写出一个满足条件的E数列
;如果不存在,说明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。
(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)
(Ⅱ)必要性:因为E数列A5是递增数列,所以
.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故
是递增数列.综上,结论得证。
已知函数f(x)(x∈R)满足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.
(1)求函数f(x)的表达式;
(2)若数列{an}满足a1=
,an+1=f(an),bn=
-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;
(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}为等比数列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)证明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
| 1 | bn2-1 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
| 1 |
| 2 |
| x-y |
| 1-xy |
| 1 |
| 2 |
| 2an |
| 1+an2 |
| 1 |
| 2f(an) |
| 4Tn-m |
| 4Tn+1-m |
| 1 |
| 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com