已知数列满足:是其前项和.则满足不等式的最小正整数的值为 12 查看更多

 

题目列表(包括答案和解析)

已知数列的前项和为,且满足 (),,设

(1)求证:数列是等比数列;

(2)若,求实数的最小值;

(3)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成 ()的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

 

查看答案和解析>>

已知数列及其前项和满足: ().
(1)证明:设是等差数列;
(2)求
(3)判断数列是否存在最大或最小项,若有则求出来,若没有请说明理由.

查看答案和解析>>

已知数列的前项和为,且满足 (),,设
(1)求证:数列是等比数列;
(2)若,求实数的最小值;
(3)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成 ()的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

查看答案和解析>>

已知数列及其前项和满足: ().
(1)证明:设是等差数列;
(2)求
(3)判断数列是否存在最大或最小项,若有则求出来,若没有请说明理由.

查看答案和解析>>

已知数列{an}的前n项和为Sn,且满足a1=a(a≠3),,设,n∈N*
(1)求证:数列{bn}是等比数列;
(2)若an+1≥an,n∈N*,求实数a的最小值;
(3)当a=4时,给出一个新数列{en},其中,设这个新数列的前n项和为Cn,若Cn可以写成tp(t,p∈N*且t>1,p>1)的形式,则称Cn为“指数型和”.问{Cn}中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案