解:(1)如图,⊙O为所求作的圆. ---------------------3分 (说明:正确作图得2分,写出结论得1分. ) (2) ∵四边形ABCD为菱形. ∴AB=BC=CD=DA.∠B=∠D. ∵∠B=60°.∴△ABC.△ADC为等边三角形. ---------4分 ∴∠BAC=60°,∠CAD=60°. ∵点O是△ABC的外心, ∴点O是三条边垂直平分线的交点. 连接AO并延长AO交BC于点E.如图: ∴AE⊥BC,AE平分BC. ------5分 ∵△ABC为等边三角形.∴AB=AC, ∠BAC=60°. ∴∠BAE=∠CAE=∠BAC=30°. --------------6分 ∴∠OAD=∠EAC+∠CAD=90°.∴OA⊥AD. ---------7分 ∵OA是⊙O的半径. ∴AD为⊙O的切线. ---------------------8分 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)如图所示,过点F(0,1)的直线ykxb与抛物线yx2交于Mx1y1)和Nx2y2)两点(其中x1<0,x2<0).

(1)求b的值.

(2)求x1x2的值

(3)分别过MN作直线ly=-1的垂线,垂足分别是M1N1,判断△M1FN1的形状,并证明你的结论.

(4) 对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分10分)如图所示,过点F(0,1)的直线ykxb与抛物线yx2交于Mx1y1)和Nx2y2)两点(其中x1<0,x2<0).

(1)求b的值.

(2)求x1x2的值

(3)分别过MN作直线ly=-1的垂线,垂足分别是M1N1,判断△M1FN1的形状,并证明你的结论.

(4) 对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分10分)观察思考

某种在同一平面进行传动的机械装置如图1,图2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且

PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点OOH l于点H,并测得

OH = 4分米,PQ = 3分米,OP = 2分米.

解决问题

1.(1)点Q与点O间的最小距离是        分米;点Q与点O间的最大距离是        分米;点Ql上滑到最左端的位置与滑到最右端位置间的距离是       分米.

2.(2)如图3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?

3.(3)①小丽同学发现:“当点P运动到OH上时,点Pl的距离最小.”事实上,还存在着点Pl距离最大的位置,此时,点Pl的距离是       分米;②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.

 

查看答案和解析>>

(本小题满分10分)观察思考

某种在同一平面进行传动的机械装置如图1,图2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且

PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点OOH l于点H,并测得

OH = 4分米,PQ = 3分米,OP = 2分米.

解决问题

1.(1)点Q与点O间的最小距离是        分米;点Q与点O间的最大距离是        分米;点Ql上滑到最左端的位置与滑到最右端位置间的距离是        分米.

2.(2)如图3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?

3.(3)①小丽同学发现:“当点P运动到OH上时,点Pl的距离最小.”事实上,还存在着点Pl距离最大的位置,此时,点Pl的距离是        分米;②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.

 

查看答案和解析>>

(本小题满分10分)

 

观察思考

某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得OH = 4分米,PQ = 3分米,OP = 2分米.

解决问题

(1)点Q与点O间的最小距离是       分米;点Q与点O间的最大距离是       分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是       分米.

(2)

如图14-3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?

(3)①小丽同学发现:“当点P运动到OH上时,点P到l的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是       分米;

②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.

 

查看答案和解析>>


同步练习册答案