题目列表(包括答案和解析)
已知数列
满足
,![]()
(1)求证:数列
是等比数列;
(2)求数列
的通项和前n项和
.
【解析】第一问中,利用
,得到
从而得证
第二问中,利用∴
∴
分组求和法得到结论。
解:(1)由题得
………4分
……………………5分
∴数列
是以2为公比,2为首项的等比数列;
……………………6分
(2)∴
……………………8分
∴
……………………9分
∴![]()
如图,三棱柱
中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。
![]()
(I) 证明:平面
⊥平面![]()
(Ⅱ)平面
分此棱柱为两部分,求这两部分体积的比.
【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.
【解析】(Ⅰ)由题设知BC⊥
,BC⊥AC,
,∴
面
, 又∵![]()
面
,∴
,
由题设知
,∴
=
,即
,
又∵
, ∴
⊥面
, ∵![]()
面
,
∴面
⊥面
;
(Ⅱ)设棱锥
的体积为
,
=1,由题意得,
=
=
,
由三棱柱
的体积
=1,
∴
=1:1, ∴平面
分此棱柱为两部分体积之比为1:1
(理)(本小题8分)如图,在四棱锥
中,底面
是矩形,
平面
,
,
,以
的中点
为球心、
为直径的球面交
于点
.
(1) 求证:平面
平面
;
(2)求点
到平面
的距离.
证明:(1)由题意,
在以
为直径的球面上,则![]()
![]()
平面
,则![]()
又
,
平面
,
∴
,![]()
平面
,
∴平面
平面
. (3分)
(2)∵
是
的中点,则
点到平面
的距离等于点
到平面
的距离的一半,由(1)知,
平面
于
,则线段
的长就是点
到平面
的距离
∵在
中,![]()
∴
为
的中点,
(7分)
则点
到平面
的距离为
(8分)
(其它方法可参照上述评分标准给分)
某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第
年比上一年增加
万吨,记2011年为第一年,甲、乙两工厂第
年的年产量分别为
万吨和
万吨.
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.
【解析】本试题主要考查数列的通项公式的运用。
第一问由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98
第二问,考查等差数列与等比数列的综合,考查用数列解决实际问题,其步骤是建立数列模型,进行计算得出结果,再反馈到实际中去解决问题.由于比较两个工厂的产量时两个函数的形式较特殊,不易求解,故采取了列举法,数据列举时作表格比较简捷.
解:(Ⅰ)由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分
(Ⅱ)由于n,各年的产量如下表
n 1 2 3 4 5 6 7 8
an 100 110 120 130 140 150 160 170
bn 100 102 106 114 130 162 226 354
2015年底甲工厂将被乙工厂兼并
已知正数数列{an }中,a1 =2.若关于x的方程
(
)对任意自然数n都有相等的实根.
(1)求a2 ,a3的值;
(2)求证![]()
【解析】(1)中由题意得△
,即
,进而可得
,.
(2)中由于
,所以
,因为
,所以数列
是以
为首项,公比为2的等比数列,知数列
是以
为首项,公比为
的等比数列,利用裂项求和得到不等式的证明。
(1)由题意得△
,即
,进而可得
(2)由于
,所以
,因为
,所以数列
是以
为首项,公比为2的等比数列,知数列
是以
为首项,公比为
的等比数列,于是
,
所以![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com