题目列表(包括答案和解析)
(本题满分12分)第26届世界大学生夏季运动会将于2011年11月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用
表示所选志愿者中能担任“礼仪小姐”的人数,试写出
的分布列,并求
的数学期望。
![]()
(本题满分12分,第1小题6分,第小题6分)
设函数
的定义域为集合A,函数
的定义域为集合B。
(1)求A∩B;
(2)若
,求实数
的取值范围。
(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.
已知直线l:
与双曲线C:
相交于A、B两点.
(1)求实数a的取值范围;
(2)当实数a取何值时,以线段AB为直径的圆经过坐标原点.
(本题满分12分,第(1)小题6分,第(2)小题6分)
如图,
是圆柱体
的一条母线,
过底面圆的圆心
,
是圆
上不与点
、
重合的任意一点,已知棱
,
,
.
(1)求直线
与平面
所成的角的大小;
(2)将四面体
绕母线
转动一周,求
的三边在旋 转过程中所围成的几何体的体积.
(本题满分12分,第(1)小题5分,第(2)小题7分)
已知锐角△ABC中,三个内角为A、B、C,向量
=
2-2
,
+![]()
,
=![]()
-
,1+![]()
,
∥
.
(1)求∠A的大小;
(2)求函数
=2
+
取得最大值时,∠B的大小.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com