当为偶数时,有 .,同理可求得 查看更多

 

题目列表(包括答案和解析)

(本小题14分)在数列中,=0,且对任意k成等差数列,其公差为2k. (Ⅰ)证明成等比数列;
(Ⅱ)求数列的通项公式;                
(Ⅲ)记.  证明: 当为偶数时, 有.

查看答案和解析>>

(本小题14分)在数列中,=0,且对任意k成等差数列,其公差为2k.  (Ⅰ)证明成等比数列;

(Ⅱ)求数列的通项公式;                

(Ⅲ)记.   证明:  当为偶数时, 有.

 

 

查看答案和解析>>

已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,

;当为奇数时,.

(1)若为偶数,且成等差数列,求的值;

(2)设(N),数列的前项和为,求证:

(3)若为正整数,求证:当(N)时,都有.

 

查看答案和解析>>

已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,;当为奇数时,.

(1)若为偶数,且成等差数列,求的值;

(2)设(N),数列的前项和为,求证:

(3)若为正整数,求证:当(N)时,都有.

 

查看答案和解析>>

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>


同步练习册答案